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Summary. It is shown that the matrix diagonalization bottleneck associated with 
the sequential O(N3w) diagonalization of the fock matrix within each iteration 
of the Direct-SCF procedure may be eliminated, and replaced instead with a 
combination of parallel <4 O(NBvN) and sequential O(N3ub) steps. For large basis 
sets, the relation Nsu b <~ NBFN between the dimension of the expansion subspace 
and the number of basis functions leads to a method of wave-function optimiza- 
tion in which the sequential bottleneck is eliminated. As a side benefit, the 
second-order iterative procedure on which this method is based displays superior 
convergence properties, and provides greater insight into the behavior of the 
energy with respect to orbital variations, than the traditional first-order, fixed- 
point, iterative approaches. The implementation of this method may be incorpo- 
rated into essentially any existing Direct-SCF program with only minimal,' and 
localized, changes. 
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1 Introduction 

In traditional Self-Consistent-Field (SCF) wave-function optimization methods 
[1, 2], an effective one-electron hamiltonian operator, called the fock operator, is 
constructed within a given orbital basis. This lock operator depends on the 
(occupied) orbitals, or equivalently within the given orbital basis, on the expan- 
sion coefficients of these orbitals. This dependence will be denoted F[C], where C 
is the matrix of orbital coefficients, F is the associated fock matrix, and the 
functional dependence is denoted with the square brackets. The orbital basis is 
usually called the atomic orbital (AO) basis, and the orthonormal orbitals which 
define the wave function are called the molecular orbitals (MO). In traditional 
approaches, a solution to the nonlinear equation: 

F[C]C = SC~ (1) 

is sought using various fixed-point iterative schemes. In this equation, the matrix 
S is the overlap matrix of the basis functions, and serves as a metric for the 
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orbital variations. The elements of the diagonal matrix ~ are usually interpreted 
as the orbital energies, and along with other available information may be used 
to compute the total energy which is defined as the expectation value of the 
hamiltonian operator. 

E = (2) 

The usual iterative scheme may be denoted as: 
F[C(i)]C(i+ 1) = SC(i+ 1)~(i+ 1) (3) 

where the superscripts indicate a running iteration index. That is, given a set of 
occupied orbitals C (i), the fock matrix is constructed. This fock matrix h i e  °)] is 
then used in a generalized eigenvalue equation to define a new set of orbitals for 
the next iteration C (¢+ 1). Convergence is determined usually by monitoring the 
change of the molecular orbitals between successive iterations, and stopping the 
procedure when the change is sufficiently small. Additional convergence criteria 
might include also changes in the total energy, in the one-particle density matrix 
in the AO basis D LA°I, or in other properties of interest. Convergence difficulties 
are often encountered with the above iterative method [3], and consequently much 
effort has been devoted to the development of suitable damping and interpolation 
schemes [3, 4]. The notion of a self-consistent-field arises from Eq. (1) using the 
interpretation that the occupied orbitals define an effective or averaged electro- 
static field, within which each electron moves independently of the other electrons. 

In Direct-SCF approaches [5-8], the I/O of the electron repulsion integrals 
associated with the construction of the fock matrix within each iteration is 
eliminated, and replaced instead with the recomputation of these integrals as 
required. In sequential implementations, the greatest benefit of this approach is 
the elimination of the accompanying filespace requirements, thereby allowing 
computations with several hundred or even a few thousand basis functions to be 
completed on supercomputers and dedicated workstations. An active area of 
research involves the exploitation of the sparseness of the repulsion integral 
array. For large molecular systems, the effort for Direct-SCF calculations scales 
empirically only as O(~N~FN) , instead of the small-basis limit O(N4FN), when 
this sparseness is used effectively with integral cutoff and A-density matrix 
thresholds. Herein, such dependence will be denoted <4 O(NBFN). The overall result 
is that, for sufficiently large basis sets, Direct-SCF procedures are actually more 
efficient than conventional I/O-based procedures, despite the redundant repul- 
sion integral recomputations. 

Equation (1) follows from the variation of the total energy of Eq. (2), subject 
to the constraint that the orbitals remain orthonormal, C tSC = 1. The derivation 
of Eq. (1) is straightforward, but somewhat lengthy, and will not be given in this 
brief report (see Ref. [2], for example, for further details). The theory and 
interpretation of electronic wave functions have been influenced strongly by the 
ideas of an effective one-electron hamiltonian operator, the general form of Eq. 
(1), the orbital energies defined by Eq. (1), and even the particular canonical 
orbitals which result from Eq. (1). Theories related to solid state and band 
structure calculations, the electron gas, diagrammatic perturbation theory, time- 
dependent perturbation theory, ionization potentials, electron affinities, electron 
propagators, and Green's functions, to name only a few, have all been influenced 
by the form of Eq. (1). 

However, Eq. (1) actually results from three independent conditions: (1) that 
the molecular orbitals remain orthonormal, (2) that the total energy is stationary 
with respect to orbital variations, and (3) that the orbitals are chosen to be in 
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their canonical form. In the more recently developed multiconfiguration SCF 
(MCSCF) theories in which the role of an effective one-electron hamiltonian 
operator is less important, these three conditions have been separated cleanly 
from each other. Orthonormalization is enforced by the particular choice of 
wave function variation coordinates. Canonicalization of the orbitals in MCSCF 
calculations is only applied as an afterthought, if at all, and even when it is 
applied, it is just as likely to be in the form of natural orbital resolution 
conditions (i.e. a diagonal density matrix constraint), or in the form of orbital 
localization conditions, as in the form of a diagonal fock matrix constraint (see, 
for example, Ref. [9] for a discussion of the orbital resolution effects on energy 
gradients). However, during the solution of the orbital optimization equations, 
orbital canonicalization plays essentially no role whatsoever. Instead, the energy 
expectation value of Eq. (2) is simply regarded as a function of all possible 
(essential) orbital variations, and the energy is minimized within this variational 
space [10]. In this report, it is emphasized that this alternative viewpoint may 
also be applied to the case of single-configuration SCF wave functions. 

It is then rather a matter of taste as to which principle is considered to be the 
more basic to the nature of the SCF wave function: the minimization of the 
energy with respect to orbital variations (i.e. minimization on an energy surface), 
or the determination of a self-consistent effective one-electron hamiltonian 
operator (i.e. a fock operator). This issue, although perhaps important in 
another context, is not discused further in this report. Instead, it will be 
demonstrated that the energy-surface point of view leads directly to an iterative 
method which allows for the optimization of SCF wave functions without the 
need for a matrix diagonalization. This optimization method applies to both 
closed- and open-shell and to both spin-restricted (RHF) and spin-unrestricted 
(UHF) wave functions. The elimination of the matrix diagonalization step is 
particularly important in parallel implementations of the Direct-SCF method. 
This is due to the fact that matrix diagonalization is particularly difficult to 
implement efficiently on either distributed or shared memory machines, and on 
either single-instruction-multiple-data (SIMD) or multiple-instruction-multiple- 
data (MIMD) architectures, due to the necessary compromises between load 
balancing and the communication overhead. During the workshop, F. E. Harris 
and R. Littlefield [11] both discussed the difficulties associated with matrix 
diagonalization on parallel machines, and these presentations provided the 
impetus for the preparation of this report. 

2 Parallel second-order SCF methods 

Second-order SCF methods applicable to sequential implementation have been 
developed previously by Bacskay [12]. A brief summary of this approach is given 
here, primarily to establish notation and to point out the important features for 
a parallel implementation. Due to the similarities to the more general MCSCF 
case, it is most convenient to use a similar approach in the single-configuration 
SCF case. Consequently, the notation of Ref. [ 10] will be used and extended where 
necessary. The simple case of a closed-shell RHF wave function will be considered 
explicitly, but extension to more general cases [3, 12] is straightforward. 

It is most convenientto begin the discussion by assuming that an orthonor- 
real MO basis is available, and then to express the required computational steps 
in the AO basis in which Direct-SCF-type integral-recomputation technology 
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may be applied. To this end, assume that the AO basis set Z and an orthonormal 
MO basis do are related by the orbital coefficient matrix C as: 

dO = zC (4) 

A transformation to a new orthonormal basis may be written as dO' = dOU where 
U is a real rotation matrix (i.e. U r U =  1; Det ( lY )=  1) parameterized as 
U = exp(K) with K = - K  r. If all of  the occupied orbitals are grouped together, 
then the essential orbital rotation parameters (i.e. nonredundant) occur only in 
the off-diagonal-block of the antisymmetric matrix K. These elements will be 
written as K~, ( = --K,~) for i occupied and a unoccupied in the wave function. 
The energy does not depend on the other elements of the matrix, i.e. K U and Kab, 
and they may be set to zero without loss of generality. For  simplicity, the 
complications due to spatial symmetry will not be considered (see, for example, 
Ref. [10] for further details), but it is straightforward to enforce symmetry 
constraints on the matrices K and U. With this parameterization of the wave- 
function -variations, the energy may be written explicitly as an expansion about 
the current wave function in terms of the parameters {K~ }. 

E(k)  = E(O) + wrk  + ½krBk + O(K3) . . .  (5) 

with the elements of the vector k defined as k(~a) = Kia with (ia) treated as a single 
vector index. The elements of the gradient vector w and the hessian matrix B are 
given as: 

W(ia) = 2F~ (6) 

B(~,)(jb) = 2F~b6~j -- 2F~6~b + 8(2g.~bj -- ½g~jb~ -- ½g~b0) (7) 

The fock matrix F in these expressions is defined in the MO basis as: 
occ 

F,,~ = 2hu~ + ~ 4gu~jj -- 2gujvj (8) 
J 

occ 
= 2h~ + ~ (2guru 1 1 - ~g,z~j - ~g~j~)26ej (9) 

0 
The arrays h and g in these expressions are the usual one-electron hamiltonian 
and two-electron repulsion arrays respectively. The matrix (26,7) = r~!M °1 for i, j - - t j  

occupied is the one-electron density matrix in the MO basis. (Note that this 
definition of F differs by a factor of two from that usually used for SCF cases, 
but is rather more consistent with that used elsewhere in electronic structure 
theory.) The second form of the fock matrix F in Eq. (9) is most convenient for 
back-transformation to the AO basis. 

= ( C T F [ A O ] C ) u v  

= ( C T ( Z h  [h°]) + Q [ D [ a ° l ] C ) u v  

1 1 n- $ / 3  [AO]  - -  ~ g ~ .  - -  ~ g ~ / ~ . . . ~ / ~  f l  (10) 

(11) 
(12) 

In the last expression, the two-electron contributions have been separated for later 
reference. The matrix Q[D rA°l] is the result of the two-index contraction in Eq. 
(10) of repulsion integrals g in the AO basis with the AO density matrix D EA°l, 
defined as D ~A°l = CDtM°1C T. It is the F [h°] matrix, which corresponds to F[C] 
in Eqs. (1) and (3), that is constructed in traditional SCF optimization methods. 

Optimization of the parameters {Kia } based on truncation at second order of 
Eq. (5) leads directly to the Newton-Raphson  procedure. This optimization 
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method is seldom used in MCSCF optimizations due to its poor "global" 
behavior, and several alternatives have been developed. Bacskay [ 12] has discussed 
this issue in the SCF case, and additional discussion and references may be found 
in Refs. [10, 13] for the MCSCF case. It has been found sufficient in the general 
MCSCF case to formulate the determination of the correction vector in terms of  
subspace representations of the gradient vector w and hessian matrix B. Herein 
we assume that this is the case for the simpler SCF wave functions. To this end, 
a set of linearly independent vectors x 1, x 2, . . .  are collected together to form the 
columns of the matrix X. The subspace representations of the gradient and hessian 
are then given by w = X r w  and B = X r B X  respectively. The correction vector k 
will ultimately be represented as a linear combination of these trial vectors as 
k = Xk. The subspace vector k depends of course on the details of the iterative 
procedure; these details are unimportant to the present discussion. For  definite- 
ness, it will be assumed that k is the solution of the subspace representation of 
the rational functional approximation to Eq. (5). The subspace vector k is then 
determined from the solution to the eigenvector equation [10]: 

Although this is an adequate choice based on previous MCSCF experience, par- 
ticularly when combined with trust-radius and level-shifting options [ 10], it should 
be stressed that such a choice may not be optimal for the optimization of simpler 
SCF wave functions. In any case, the matrix vector products t~ = (Bx) are required 
in order to compute the subspace matrix B, and we now focus on this task. 

In the MO basis, the matrix-vector product may be written 

~7(ia) = Z B( ia) ( jb)X( jb)  (14) 
(jb) 

= 2 Z FabXib  - -  2 Z Fo'xja 
b j 

+ 4 ~ (2gaibj 1 1 - -  ~gojbi - -  2gabi j ) (  2 X j b )  (15) 
jb 

The first two terms are simple matrix products, and need not be discussed further 
other than to mention that efficient procedures for performing this common 
operation are available on essentially all parallel machines. Back transformation 
of  the last contribution to the AO basis results in the final expression: 

= 2(xF) -- 2(Fx) + 4CTQ[ZtA°]]C (16) 

with the intermediate symmetric matrix Z tA°l defined as: 

Y,~ = Z C,jxjb Cvb = (CxCr)~v (17) 
jb 

z[ao] = y + y r  (18) 

(Note that ~ and x are treated as matrices in Eqs. (15-17), with index association 
X(ia) ~ Xia.) As seen in Eq: (16), the two-electron repulsion integral contributions 
to the required matrix-vector product may be computed in exactly the same manner 
as the construction of the F [A°[ matrix of Eq. (11). The only difference is that the 
intermediate matrix Z ~A°l is used in place of  the density matrix elements D ~A°l. 

Once the orbital correction matrix K has been determined using some iterative 
procedure, there remains the task of computing the transformation matrix 
U = exp(K). In usual MCSCF approaches, this is done by factoring the antisym- 
metric K as V A V  r and forming U =  V exp(A)V r where V is orthogonal and A 
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is block diagonal and contains at most 2 x 2 subblocks. This is essentially 
equivalent in effort and complexity to diagonalization of a symmetric matrix, 
and therefore this approach cannot be used efficiently in a parallel implementa- 
tion. The author is not aware of any practical alternative method for the exact 
computation of U that avoids a comparable diagonalization step [ 14]. However, 
there are two reasonable alternatives to the exact computation of U. The first is 
based on the truncated expansion: 

U = 1 + K + ½ K  2 (19) 

followed by a Schmidt orthonormalization step. The expansion could be contin- 
ued further, but second order is sufficient to guarantee overall second order 
convergence of the iterative procedure in the neighborhood of the final result. 
This orthonormalization procedure, although consuming roughly the same arith- 
metic operations as diagonalization O(N3vN), does not suffer the same commu- 
nication and load-balancing bottleneck as matrix diagonalization. 

The second procedure involves the construction of a rational approximation 
to the matrix exponential. One such approximation, accurate to second order, is: 

U (1 1 1 = - 5K) 1(1 + ~K) (20) 

It is easily verified that U is orthogonal, so no additional orthonormalization 
step is required. Generally it would be expected that this method would be the 
best overall approach, since essentially all interesting architectures are designed 
to solve linear equations at their most impressive computational rates. For 
example, the latest version of the CM-2 Connection Machine (a SIMD architec- 
ture) achieves 9.03 GFLOPS double precision and 17 GFLOPS single precision 
on the large-scale LINPACK benchmark [15]. The Intel Touchstone Delta 
machine (a MIMD architecture) achieves 11.9 GFLOPS on the double precision 
LINPACK benchmark [16]. This popular linear algebra benchmark is based on 
essentially the same computational step as that required in Eq. (20). 

With these computational steps discussed above, the entire SCF iterative 
procedure may now be outlined. 

Initialize C 
o c c  

Compute --~v/) [AO] = 2 ~ C.i Cvi 
i 

D O  
Compute F EA°] 
Compute F [M°] 
Initialize x I 
D O N = I  T O N M A X  

Compute Z [A°] from x N using Eq. (18) 
Compute Q[Z [A°l] using Eq. (16) 
Compute ~N using Eq. (16) 
Compute w, B, k and form k 
IF (CONVERGED) THEN EXIT 
Construct x N+ 1 

E N D D O  
Construct K from the final k = Xk 
Construct U from Eq. (20) 
Update C ~ C U  

E N D D O  

!SCF Iteration 
!Parallel <4 N BF N work 
!Parallel N3FN work 

!Subspace iterations 
!Parallel N3FN work 
!Parallel <4 N se2v work 
!Parallel N3FN work 
!Sequential N3sub work 

!Parallel N3FN work 
!Parallel N3BFN work 
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As seen in this outline, the only sequential step of any possible significance 
involves the subspace solution for k and formation of k. The effort required for 
this step varies, depending on the iterative algorithm. The N3ub effort given in the 
outline is that required for the eigenvector solution of Eq. (13), but this should 
be representative also of other iterative subspace methods. 

In the usual MCSCF scheme, the subspace is initialized with one vector, 
usually taken as the gradient vector for that iteration, X(ia)l = W(ia ) = ---~a)F!MOI" Each 
subspace iteration then adds a new expansion vector, so that the dimension of 
the subspace grows by one each iteration. However in the SCF case, due to the 
fact that the parallel <4 NBF N effort each subspace iteration is largely independent 
of the number of new trial vectors, other possibilities would appear more 
appropriate. Assume, for example, that the computation of each repulsion 
integral on average requires about 100 arithmetic operations. Multiplication of 
this integral by the corresponding Z IA°J elements consumes only ~ 6 additional 
arithmetic operations, depending on the number of coincident orbital indices. 
Consequently, the computation of several Q matrices simultaneously (say 10-20 
at a time) might require only an insignificant additional effort compared to the 
computation of a single Q matrix. In this case, the subspace dimension would 
increase by this larger number for that iteration, ignoring any reductions 
resulting from linear-dependence of the correction vectors near convergence, and 
the total number of subspace iterations would be reduced due to the increased 
variational flexibility. Reductions from 4 6 subspace cycles to 1-3 cycles might 
be expected in practice. One possible way to generate such vectors initially would 
be to use correction vectors generated during the previous SCF iterations. These 
vectors, roughly speaking, point back from the current wave function toward the 
wave functions of the previous iterations, automatically providing flexibility in 
the most important directions of wave function variational space, and avoiding 
to some extent oscillatory behavior within the subspace iterations. It is straight- 
forward, of course, to reduce the subspace dimension at any time by taking the 
most appropriate linear combinations and resetting the subspace dimension 
counter. For example, the lowest few eigenvectors from the subspace eigenvalue 
equation of Eq. (13) could be used to define this transformation. This approach 
has worked successfully in the more general MCSCF case. This subspace 
dimension reduction ensures that the effort required for the sequential subspace 
manipulations never becomes prohibitive. 

One advantage of the proposed subspace approach is that the accuracy of the 
final solution does not depend directly on the precision of the elements of the 
individual expansion vectors, provided the matrix-vector products are computed 
correctly for the given expansion vectors. It has been shown previously that such 
subspace expansion methods lend themselves naturally to the use of rather severe 
truncations in the individual elements of the expansion vectors [17]. In the 
present context, the individual expansion vectors may be truncated, normalized 
to small integer values, and then subjected to further data-compression tech- 
niques. Such data compression is particularly important in distributed-memory 
parallel computing environments where the available local memory per node is 
often scarce and the communication overhead is relatively large. Such data-com- 
pression techniques cannot be applied directly to traditional fixed-point iterative 
schemes since the truncated density matrix loses idempotency, resulting in an 
inaccurate fock matrix. 

As discussed previously, the converged orbitals from the above procedure 
generally do not result in a diagonal fock matrix F [M°l. However, if desired, such 
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a canonicalization may be imposed after the optimization procedure has com- 
pleted. This canonicalization, if restricted to rotations among occupied orbitals 
only and/or to rotations among unoccupied orbitals only, does not affect the 
wave function, but only the representation o f  the wave function. Since this 
canonicalization does not affect the wave function, it does not affect any 
observable property of  the wave function. The energy, electron density, dipole 
moment,  etc. are all invariant to such redundant orbital rotations. Apart  from 
any implicit iterations within the diagonalization procedure itself, this final 
canonicalization is a noniterative process. That  is, the C (i+ ~) matrix of  Eq. (3) 
resulting from the final F[C (i~] matrix produces a F[C (i+ ~] matrix that satisfies 
Eq. (1) to numerical accuracy; no further iterations are required to achieve 
self-consistency. 

3 Conclusions 

A practical method of SCF wave function optimization has been presented based 
on the idea of multidimensional variation of the energy expectation value. This 
method eliminates the matrix diagonalization bottleneck associated with tradi- 
tional fock-operator-based SCF iterative procedures. These traditional ap- 
proaches at tempt to simultaneously optimize and canonicalize the occupied 
orbitals. The proposed method retains the idea of optimization, but ignores the 
superfluous canonicalization constraint. Since the proposed procedure is based 
on a well-understood second-order iterative algorithm, improved convergence, 
compared to the usual fixed-point iterative procedures will be observed. In order 
to improve efficiency beyond that expected for existing sequential implementa- 
tions of  second-order methods for SCF and MCSCF wave function optimiza- 
tion, several suggestions for further investigations are given. These include the 
idea of computing several matrix-vector products simultaneously, the reuse of  
vectors from previous iterations in order to span the most important  regions of 
wave function variation space with the least amount  of  overall effort, and the use 
of  data compression techniques to optimize the storage and communication of 
the subspace expansion vectors. 
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